12月18日,2018(第十六屆)中國互聯(lián)網(wǎng)經(jīng)濟論壇在京舉行,朗鏡科技聯(lián)合創(chuàng)始人兼COO Candice Wan在現(xiàn)場發(fā)表主題演講。她認(rèn)為朗鏡科技是一個做AI大數(shù)據(jù)和共享經(jīng)濟平臺提供數(shù)據(jù)服務(wù)的公司,AI和共享經(jīng)濟都是采集數(shù)據(jù)和處理數(shù)據(jù)當(dāng)中必要的手段。
以下為演講實錄:
我剛才聽了特別多創(chuàng)業(yè)路上的同伴,關(guān)于商業(yè)模式的分享,包括價值創(chuàng)造的創(chuàng)新,所以特別高興有這樣的機會跟大家分享朗鏡科技做了那一些事情,無論是創(chuàng)業(yè)的路上和品牌發(fā)覺的路上都有新的價值和體驗。
從整個的公司介紹來講,我們是一個做AI大數(shù)據(jù)和共享經(jīng)濟平臺提供數(shù)據(jù)服務(wù)的公司。AI和共享經(jīng)濟都是采集數(shù)據(jù)和處理數(shù)據(jù)當(dāng)中必要的手段,整個的是一個數(shù)據(jù)從采集挖掘到提煉深挖的這樣一個全產(chǎn)業(yè)的流程,在這里先給大家嘮叨幾句中國互聯(lián)網(wǎng)發(fā)展路徑,大家今天都在回顧中國改革開放40年,整個的互聯(lián)網(wǎng)經(jīng)濟包括民生改善走過的路,其實消費品是老百姓感受最最明顯的一點。在整個的消費產(chǎn)業(yè)鏈我們說中國進(jìn)入數(shù)字化零售4.0時代,那它1.0時代、2.0時代、3.0時代分別是什么?其實1.0時代其實是中國消費品啟蒙的初級階段。我在出來創(chuàng)業(yè)之前供職于外資的消費品公司,其中是寶潔公司。在1988年到1995年這一段時間其實整個產(chǎn)品都是都處于供不應(yīng)求的狀態(tài),所以我們講中國零售從零到一的1.0時代,所有的生意增長、品牌的挖掘都在于有貨就有銷量的這樣一個品牌長期發(fā)展的最簡單的初期。
那2.0時代是中國渠道深耕的時代,我們講從1995年到2005年這十年越來越多的品牌公司進(jìn)入中國,不管是外資企業(yè)的加入和一些民營品牌在這時候的創(chuàng)立,所以這個時候你的生意是來自于什么呢?你的生意是來自于你的貨從一線城市、二線城市能不能進(jìn)入到三線、四線、五線城市,也就是你說的渠道是僅僅停留在表面的繁榮經(jīng)濟還是能夠帶到中國從幅員遼闊從一線到七線城市的深耕。
3.0時代可能是大家體會最深刻2005年電商開始在中國蓬勃發(fā)展,陸續(xù)有中國電商公司在美股上市。因此在電商進(jìn)入視野的時候,我們說零售3.0時代是一個非常典型的效率提升,它的效率提升體現(xiàn)在物流效率提升,體現(xiàn)在交易效率提升,體現(xiàn)在渠道效率提升。當(dāng)大家的支付可以用支付寶來完成,當(dāng)物流可以實現(xiàn)當(dāng)日達(dá)、次日達(dá),當(dāng)消費品的價格一再擊破我們能夠想象的市場底價的時候,其實這是來自于互聯(lián)網(wǎng)對于整個傳統(tǒng)的消費品零售渠道,從品牌到經(jīng)銷商到零售商到廣告商吸引消費者最終到達(dá)消費者這樣五步曲的時代慢慢轉(zhuǎn)變到現(xiàn)在是以消費者為中心,零售商、品牌方通過大數(shù)據(jù)深挖對消費者的理解和認(rèn)知,從而把整個的商業(yè)模式變的更加有效率的過程。
在我們今天主要介紹的消費品4.0時代是從2016年作為一個非常明顯的界限,從2016年開始大家可以看一下雙十一的數(shù)據(jù)和618的數(shù)據(jù),整個電商的增長不再有以前的那么迅猛包括電商的創(chuàng)業(yè)當(dāng)中也陸續(xù)有公司因為各種原因而退出這戰(zhàn)場,那新零售這個詞在2016年深入人心,為什么會有新零售時代?為什么會有O2O的時代?流量效率大家可以看到流量越來越貴,所以大家對于消費者的認(rèn)知從傳統(tǒng)的買流量到千人千面新的4.0時代包括90后消費者入市這是我們在這時代看到一個很新的訊息,親連續(xù)兩天網(wǎng)上很流行的一篇文章讓我們面對1.47億00后消費者,這個數(shù)字是很震驚的數(shù)字,00后怎么看待品牌,其實這是一個銷售和零售都進(jìn)入小眾化和碎片化的時代。在我職業(yè)生涯供職過跨境平臺比如小紅書,其實這樣的社交媒體平臺能夠在過往的幾年之內(nèi)崛起,一個非常重要的原因是90后和00后消費者對于傳統(tǒng)的大牌本能的有抵觸情緒。也就是說一瓶日本不知名品牌洗發(fā)水賣80塊錢相對于聯(lián)合利華天天打廣告知名品牌的洗發(fā)水顯然小眾品牌更容易獲得消費者的青睞,即便它價格更高即便整個瓶子上面都沒有中國文字說明,所以這是我們面對新的消費者需要深耕的數(shù)字化運營來了解這市場。這也就是為什么我們會用共享經(jīng)濟模式和AI圖像識別技術(shù)來更好的服務(wù)于消費者碎片化的線下零售時代。
我們做線下消費品數(shù)據(jù),線上的數(shù)據(jù)在過往的十幾年跟電商共同發(fā)展已經(jīng)到了非常精細(xì)化運營的時代,線下的零售數(shù)據(jù)目前來看我們覺得還是非常初期,不管是從數(shù)據(jù)的采集、數(shù)據(jù)的處理、數(shù)據(jù)的完整性、數(shù)據(jù)的深挖數(shù)據(jù)打通都有很大的發(fā)展空間和效率提升的價值。從線下的數(shù)據(jù)來講,就是數(shù)據(jù)千差萬別,我們簡而言之?dāng)?shù)據(jù)無非分三部分。這三部分是從零售的場景來講消費者從哪里來也就是我們傳統(tǒng)講的流量數(shù)據(jù)、人流數(shù)據(jù)、線下的數(shù)據(jù)。第二部分是消費者來到這場景當(dāng)中如何做消費決策。最后一部分是消費者如何支付也就是交易過程最終完成,我們大家廣為人知的支付寶微信其實講的都是一個支付數(shù)據(jù)。其實朗鏡科技在過往三年多的創(chuàng)業(yè)時間里面,我們就是深耕消費者決策數(shù)據(jù)的過程。也就是說我們提供的是整個消費者決策數(shù)據(jù)中人、貨、場里面貨和場的數(shù)據(jù),通過共享經(jīng)濟的這個眾包數(shù)據(jù)模式的采集,再加上AI圖像識別技術(shù),通過對于商品的識別還原線下消費場景當(dāng)中商品數(shù)據(jù)和場景數(shù)據(jù)。
這是一個對于消費者品牌認(rèn)知的市場調(diào)研的一條數(shù)據(jù),大家知道每年消費品品牌在品牌投放上花了非常大的精力,無非是去開發(fā)新品、滿足消費者新的訴求,或者說如何提升跟消費者之間的溝通。那大量的市場費用投放在品牌的和新品滿足新的過程當(dāng)中,依然有數(shù)據(jù)顯示有59%的最終銷量產(chǎn)出是來自于終端的卓越執(zhí)行。也就是說我們在廣告投放上有很多的數(shù)據(jù)可以來體現(xiàn),而這投放是不是很有效率,這數(shù)據(jù)是不是很能夠體現(xiàn)我們的經(jīng)濟價值的產(chǎn)出。但是在終端執(zhí)行意味著每一個費用使用的場景都發(fā)生在中國一百萬家線下零售店里面,所以如何用有效的方式去采集終端執(zhí)行的數(shù)據(jù)是我們創(chuàng)業(yè)當(dāng)中所解決的企業(yè)痛點。在沒有AI圖像識別技術(shù)之前,沒有互聯(lián)網(wǎng)革新之前,對這一類數(shù)據(jù)基本上只有兩種解決方案,一種是每個品牌的銷售代表自己有一個銷售系統(tǒng)來填這一部分的數(shù)據(jù),他們填這部分的數(shù)據(jù)在,事實上我也服務(wù)過很多消費品公司雖然都是非常非常優(yōu)秀的消費品公司,但是大家洗這一部分?jǐn)?shù)據(jù)的時候發(fā)現(xiàn)水分非常大,因為你要求一個人又作運動員又做裁判員他填的數(shù)據(jù)會直接影響他的銷售獎金,所以這部分的數(shù)據(jù)是有很大的造假嫌疑,因此品牌公司都會去雇傭像尼爾森這樣的第三方市場公司進(jìn)行數(shù)據(jù)的復(fù)核和監(jiān)測。但是因為人力成本的上升和人口紅利的消失,導(dǎo)致傳統(tǒng)的模式成本非常高。且在人的采集過程當(dāng)中都會出現(xiàn)不可避免的誤差和數(shù)據(jù)的失真,同時在數(shù)據(jù)沉淀過程當(dāng)中有很大的數(shù)據(jù)流失。
因此我們?nèi)藶閯?chuàng)造了一個叫AI和大數(shù)據(jù)在終端消費者零售端的四部曲的數(shù)據(jù)整合,第一部分我們數(shù)據(jù)的收集是通過中國最大的消費品零售眾包平臺,我們在線上已經(jīng)有了將近一百萬的注冊會員,在全國1到7線城市進(jìn)行終端門店的數(shù)據(jù)收集工作。同時我們也可以提供軟件服務(wù)讓品牌方為他的銷售人員裝系統(tǒng),通過系統(tǒng)監(jiān)測的方式確保數(shù)據(jù)有效真實的回收。第二部分在數(shù)據(jù)采集完成之后我們進(jìn)行圖像識別的處理,也就是我們講的數(shù)據(jù)處理部分,現(xiàn)在的圖像識別技術(shù)可以實現(xiàn)平均準(zhǔn)確率95%,同時數(shù)據(jù)一分鐘之內(nèi)的實時反饋。第三部分我們進(jìn)行數(shù)據(jù)的挖掘和深耕,這也是大數(shù)據(jù)時代傳統(tǒng)的數(shù)據(jù)深耕,同時更多的是分析報告,在大數(shù)據(jù)的都是系統(tǒng)的方式產(chǎn)生數(shù)據(jù)產(chǎn)品,最終遞交給品牌方一個實時的線上線下的數(shù)據(jù)打通。
剛剛介紹的所謂數(shù)據(jù)工具一種是我們的會員通過會員接單、眾包平臺的方式采集數(shù)據(jù)。第二種我們可以用品牌方定制需要的APP內(nèi)置所需要的執(zhí)行標(biāo)準(zhǔn)和數(shù)據(jù)格式進(jìn)行數(shù)據(jù)的實時反饋。這是我們眾包會員的覆蓋,我們在1到6線城市能夠覆蓋中國620鄉(xiāng)鎮(zhèn)及以上的城市覆蓋。
這是我們AI的六大核心技術(shù),大家都知道AI的圖像識別其實比較多的人臉識別包括熱點圖、動線圖這樣的過程,其實在商品端圖像識別是一個非常復(fù)雜的過程。商品圖像識別的過程本身解決是線下消費品信息采集的效率問題,也就是說如果我為了追求圖像識別的準(zhǔn)確率達(dá)到一個非常精準(zhǔn)的數(shù)據(jù)輸出值,我首先要保證數(shù)據(jù)的輸入是在一個可以被機器處理的且對于我的使用人員而言并不復(fù)雜的拍照過程,拍照如果要求很專業(yè)的人來做,這個事情不是有互聯(lián)網(wǎng)價值能夠進(jìn)行大規(guī)模推廣的,且為企業(yè)提升效能的這樣一個工具。
因此其實在技術(shù)領(lǐng)域我們最重要的克服并不是說我輸出一個準(zhǔn)確值是一個很高的值而是在整個的使用過程的場景當(dāng)中,我們能夠克服在中國非常復(fù)雜的商業(yè)環(huán)境當(dāng)中有一定的傾斜、有一定的明暗、有一定的模糊度情況下依然輸出相對比較高質(zhì)量的數(shù)據(jù)結(jié)果。
這是我們一些識別的視力圖,我們在圖像識別的過程當(dāng)中基本上現(xiàn)在可以做到所有的貨架識別、分銷識別、價錢識別、商品定位的識別包括整個貨架的整個全景的拼接包括競爭對手的分析等等。這是整個的貨架拼接的技術(shù),整個拼接的技術(shù)是依賴將近一百萬的注冊會員和圖像識別技術(shù)是可以還原中國所有終端門店分品類的線下陳列的情況。
這是在我們目前為止應(yīng)用了AI深度學(xué)習(xí)的方式,通過小樣本的學(xué)習(xí),如果大家知道深入學(xué)習(xí)最終是一個樣本量的學(xué)習(xí),在商品識別當(dāng)中因為商品的更新?lián)Q代非???,人臉識別整個的 人的生命周期機器識別到長期能夠識別到,除了小朋友之外都有比較長的生命周期,但是產(chǎn)品會經(jīng)常換新包裝,對于技術(shù)和挑戰(zhàn)是有小樣本的識別,任何的新包裝上新之后通過50張小樣本都會有一個基本的準(zhǔn)確度的判定,這是我們剛剛介紹的在各種中國復(fù)雜的商業(yè)環(huán)境當(dāng)中。大家知道其實在中國做互聯(lián)網(wǎng)創(chuàng)業(yè)要比在美國困難很多,尤其是零售商業(yè)場景的競爭激烈度和復(fù)雜程度,在美國其實可能它的貨架,其實美國的零售業(yè)態(tài)總的來講兩種,一個是大賣場的模式、給跨貨架。第二種是便利店的模式,非常簡單的商品陳列,其實中國商品陳列和光線店內(nèi)的貨架寬窄程度非常復(fù)雜,所以在中國做這樣的創(chuàng)業(yè)會比美國艱難得多,技術(shù)挑戰(zhàn)也要難得多。
這是我們最終輸出的所謂的數(shù)據(jù),一個成型的輸出量部分的報告,一部分是在手機端可以對單店數(shù)據(jù)一分鐘之內(nèi)的實時響應(yīng),另一部分我們根據(jù)管理層的要求可以整合全國的數(shù)據(jù),然后輸出以品牌定制化的任何品類的為主、品牌為輔的這樣一個數(shù)據(jù)。
感謝大家的時間,謝謝。